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Abstract
The dynamical correlation functions in one-dimensional electronic systems show power-law
behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi
momenta. These systems are usually referred to as Tomonaga–Luttinger liquids. However, near
well defined lines of the (k, ω) plane the power-law behaviour extends beyond the low-energy
cases mentioned above, and also appears at higher energies, leading to singular features in the
photoemission spectra and other dynamical correlation functions. The general spectral-function
expressions derived in this paper were used in recent theoretical studies of the finite-energy
singular features in photoemission of the organic compound tetrathiafulvalene–
tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called
pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and
describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to
calculate the charge and spin object phase shifts appearing as exponents of the power laws. In
particular, we concentrate on the spin-density m → 0 limit and on effects in the vicinity of the
singular border lines, as well as close to half filling. Our studies take into account spectral
contributions from types of microscopic processes that do not occur for finite values of the spin
density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are
studied. Our results are useful for the further understanding of the unusual spectral properties
observed in low-dimensional organic metals and also provide expressions for the one- and
two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a
1D optical lattice with on-site two-atom repulsion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The low-energy physics of correlated one-dimensional
(1D) problems has some universal properties described by
the Tomonaga–Luttinger liquid (TLL) [1]. In turn, a
pseudofermion dynamical theory (PDT) beyond the TLL [2, 3]
was recently used to study the finite-energy singular features
in photoemission of the organic compound tetrathiafulvalene–
tetracyanoquinodimethane (TTF-TCNQ) metallic phase [4].
While the PDT was originally introduced for the 1D Hubbard
model, more recently other methods for the study of finite-
energy spectral and dynamical functions of 1D correlated
systems have been introduced [5, 6]. Both the finite-energy

spectral-weight distributions studied by the PDT for the
1D Hubbard model and the methods of [5, 6] for other
1D correlated problems include power-law singularities near
well defined branch lines with exponents depending on the
interaction strength and the excitation momentum. In the
limit of low energy the PDT correlation- and spectral-function
expressions recover the usual low-energy TLL results [7].

Besides a renewed interest in the unusual spectral and
dynamical properties of quasi-1D organic compounds [8, 9],
recently there has been an increasing interest in those of
interacting ultracold fermionic atoms in 1D optical lat-
tices [10]. Quantum effects are strongest at low dimen-
sionality, leading to unusual phenomena such as charge–spin
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separation at all energies [8, 9]. Thus, the further understand-
ing of the microscopic mechanisms behind the unusual spectral
properties observed in low-dimensional correlated systems and
materials is a topic of high scientific interest.

The 1D Hubbard model is one of the few realistic models
for correlated electrons in a discrete lattice for which one
can exactly calculate all the energy eigenstates and their
energies [11–13]. It includes a first-neighbour transfer integral
t , for electron hopping along the chain, and an effective
on-site Coulomb repulsion U . For finite energy values the
metallic phase of this model goes beyond the low-energy
behaviour described by the usual TLL [1] and thus the
study of spectral functions is a very involved many-electron
problem. Fortunately, the construction of a pseudofermion
description by means of a unitary transformation which slightly
shifts the discrete momentum values of the corresponding
pseudoparticles of [14, 15] leads to the PDT, whose energy
spectrum has no residual-interaction energy terms. Therefore,
such a description is suitable for the derivation of explicit
expressions for these functions [2, 3, 7].

The PDT is a generalization for finite values of U of
the scheme introduced in [16, 17] for large U values. It
profits from the use of a description of the exact energy
eigenstates in terms of occupancy configurations of several
branches of pseudofermions. The ground state has finite
occupancy of charge c and spin s1 pseudofermions only. Under
the ground-state–excited-energy-eigenstate transitions, the
pseudofermions and pseudofermion holes undergo elementary
scattering events with the pseudofermions and pseudofermion
holes created in these transitions. This leads to excited-
state, interaction, density, and two-momenta-dependent two-
pseudofermion phase shifts. The point is that the one- and
two-electron spectral functions can be expressed in terms
of pseudofermion determinants which are a functional of
such phase shifts. Use of the PDT reveals that for finite
values of U/t all singular one-electron spectral features of
the model are of power-law type, controlled by negative
exponents. Furthermore, the PDT line shapes associated
with such exponents were found to correspond to the unusual
charge and spin spectral features observed by photoemission
experiments for the whole finite-energy band width in quasi-
1D organic metals [18]. (The use of the dynamical density
matrix renormalization group method [19] leads to results
consistent with those obtained by the PDT.) Furthermore, when
combined with the renormalization group, the use of the PDT
reveals that a system of weakly coupled Hubbard chains is
suitable for the successful description of the phase diagram
observed in quasi-1D doped Mott–Hubbard insulators [20].

The low-energy physics of the model corresponds
to the universal TLL behaviour and was studied by
different techniques, such as conformal-field theory [21]
and bosonization [22]. There are many investigations
where the low-energy conformal invariance was combined
with the model exact Bethe-ansatz solution in the study
of the asymptotics of correlation functions and related
quantities [1, 22]. As mentioned above, the studies of [7]
confirm that in the limit of low energy the general finite-energy
spectral- and correlation-function expressions provided by the

PDT in [2] recover the correct behaviour given by conformal-
field theory.

The main goal of this paper is to provide the details of an
extension of the PDT introduced in [2, 3, 7] to initial ground
states with spin density m → 0, which was used in recent
theoretical studies of the finite-energy singular features in
photoemission of the TTF-TCNQ metallic phase [4]. The point
is that such an extension involves spectral contributions that do
not occur for finite values of the spin density and hence are not
taken into account by the expressions of [2, 3, 7]. In order to
introduce the generalized spectral-function expressions used in
the recent studies of the TTF-TCNQ spectral features presented
in short form in [4] we present here such an extension of the
PDT.

The unusual spectral properties are mainly determined by
the occupancy configurations in the excited states of the two-
pseudofermion branches that have finite occupancies for the
ground state. These are the charge c0 pseudofermion and spin
s1 pseudofermion branches. The ground state corresponds
to charge c0 pseudofermion (and spin s1 pseudofermion)
finite occupancy for canonical-momentum values in the range
|q̄| < q0

Fc0 = 2kF (and |q̄| < q0
Fs1 = kF↓) and charge c0

pseudofermion-hole (and spin s1 pseudofermion-hole) finite
occupancy for canonical-momentum values in the range 2kF <

|q̄| < q0
c0 = π (and kF↓ < |q̄| < q0

s1 = kF↑). The values of
the four deviations �q̄Fc0,±1 and �q̄Fs1,±1 in the two charge
±q0

Fc0 = ±2kF and two spin ±q0
Fs1 = ±kF↓ Fermi points under

each ground-state–excited-energy-eigenstate transition play a
major role in the PDT.

We denote such deviations by �q̄Fαν, ι, where αν =
c0, s1 and ι = ±1. The spectral-weight distributions are
controlled by the values of the following four associated
parameters:

2�ι
αν =

(
�q̄Fαν, ι

[2π/L]
)2

; αν = c0, s1; ι = ±1, (1)

where L � 1 is the 1D lattice length within the use of periodic
boundary conditions. According to the PDT, the contributions
from ground-state transitions to subspaces spanned by sets
of excited-energy eigenstates with the same values for the
two charge parameters 2�±1

c0 and two spin parameters 2�±1
s1

fully determine the momentum k and energy ω dependence
of the general finite-energy spectral functions in the small
(k, ω)-plane region associated with the energy and momentum
spectrum of these excited states [2, 3].

The general PDT finite-energy spectral-function expres-
sions given in [2] refer to the metallic phase for initial ground
states with spin densities m in the range 0 < m < n, where
n is the electronic density such that 0 < n < 1. Actually,
the expressions found in [2] refer to values of n such that the
Fermi-point charge velocity vc0 is larger than the Fermi-point
spin velocity vs1. For finite values of U/t , this excludes den-
sities n in the vicinity of half filling. One of our goals is to
extend the studies of that reference to electronic densities such
that vs1 > vc0.

The general expressions of the exponents that control the
singular features of the above finite-energy spectral-function
expressions provide the correct zero spin-density values in
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the limit m → 0. Moreover, as given in equation (55)
of [2], for excitations such that 2�ι

αν �= 0 for the two
αν = c0 charge and two αν = s1 spin parameters the
corresponding four-pseudofermion relative weights have the
asymptotic expression provided in that equation. It follows
that for zero spin excitations such that the four parameters
2�ι

αν where αν = c0, s1 and ι = ±1 are finite the general
convolution function and corresponding pre-factor function
F0(z) given in equations (61) and (62) of [2], respectively,
provide the correct zero spin-density contributions to the
spectral-function expressions in the limit of zero spin density.
The point is that for densities in the ranges 0 < n < 1
and 0 < m < n all ground-state–excited-energy-eigenstate
transitions lead to finite values for these four parameters.

While some m → 0 one- and two-electron excitations
also lead to finite values for the two αν = c0 charge and
two αν = s1 spin parameters 2�ι

αν , there are also m → 0
excitations for which one (or both) spin parameter(s) 2�±1

s1
vanishes (or vanish). In this case the corresponding s1, ι

pseudofermion relative weights do not have the asymptotic
expression provided in equation (55) of [2]. Nonetheless, we
find in this paper that the contributions to the spectral-function
expressions from ground-state transitions to the excited-energy
eigenstates which span such excitations lead to convolution
functions of the same general form as that provided in equation
(61) of [2]. The only difference is that the pre-factor F0(z)
of such convolution functions given in equation (62) of that
reference is replaced by another suitable function derived in
this paper and given in the appendix.

Since these convolution functions fully control all the dif-
ferent spectral-function contributions given in equations (66),
(68), and (70) of [2], the derivation of all m = 0 contributions
requires the use of such suitable pre-factors, which were taken
into account in the studies of the TTF-TCNQ spectral features
of [4] and we calculate in this paper. Interestingly, the different
expressions found here for the pre-factor F0(z) are such that
the corresponding pre-factors of the space and time asymptotic
expressions of correlation functions [7] are continuous func-
tions of m as m → 0.

The extension of the expressions for the one- and two-
electron spectral-weight distributions introduced in [2] for the
1D Hubbard model to the regime where m → 0 involves
taking into account contributions from transitions to subspaces
spanned by excited states such that one, two, three, or even
four out of the four parameters 2�ι

αν , where αν = c0, s1 and
ι = ±1, vanish. Note that according to equation (1) the value
of the αν, ι pseudofermion canonical-momentum Fermi points
associated with 2�ι

αν = 0 values remains unchanged under
the corresponding ground-state–excited-state transitions. Such
contributions do not exist for the m > 0 regime addressed
in [2] but must be taken into account in the quantitative study of
the spectral-weight distributions of the correlated metal at zero
spin density. In this paper we also extend the one- and two-
electron spectral-weight distributions of [2] to all electronic
densities of the metallic phase. Although we do not consider
the half-filling Mott–Hubbard insulator such that vc0 = 0,
our expressions refer to all electronic densities of the metallic
phase and thus also for those in the vicinity of unity.

Another problem solved in this paper is the derivation of
explicit expressions for the spectral functions in the vicinity
of the singular border lines, which again were used in the
recent studies of the TTF-TCNQ spectral features of [4]. For
that one-electron problem such border lines correspond to
processes for which the extra charge and spin objects created
upon removal or addition of the electron have exactly the
same velocity. Such an equality of the charge and spin
velocities occurs at well defined lines in the (k, ω) plane
and leads to power-law singular behaviour along such border
lines. In contrast to the power-law branch-line singular features
studied in [2], which are controlled by momentum, U/t , and
density dependent negative exponents, the border-line power-
law singular features are controlled by a universal exponent
given by −1/2, as given in equation (2) of [4]. Further details
on the processes involved in the applications to TTF-TCNQ are
also reported.

The paper is organized as follows. In section 2 we
introduce the model and provide basic information about the
pseudofermion description needed for our studies. In section 3
the general expressions required for the study of the finite-
energy spectral-weight distributions of the metallic phase for
initial m → 0 ground states are calculated. This includes
derivation of explicit expressions of the spectral functions in
the vicinity of the singular border lines for density ranges
0 < n < 1 and 0 � m < n. In section 4 we use
the expressions obtained in the previous section and in [2] to
provide further details on the processes that contribute to the
unusual photoemission spectrum of TTF-TCNQ. Finally, the
concluding remarks are presented in section 5.

2. The problem and the pseudofermion description

Our study focuses on finite-ω N -electron spectral-weight
distributions of the following general form:

Bl
N (k, ω) =

∑
f

|〈 f | Ôl
N (k)|GS〉|2

× δ(ω − l[E f − EGS]); lω > 0, (2)

where l = ±1. We focus our attention on the cases of more
physical interest which correspond to N = 1, 2. In the
above expression the general N -electron operators Ô+1

N (k) ≡
Ô†

N (k) and Ô−1
N (k) ≡ ÔN (k) carry momentum k, the

f summation runs over the excited-energy eigenstates, the
energy E f corresponds to these states, and EGS is the initial
ground-state energy. The local operator Ô+1

N , j ≡ Ô†
N , j or

Ô−1
N , j ≡ ÔN , j is related to the corresponding momentum-

representation operator Ôl
N (k) of equation (2) by a Fourier

transform. As in [2], we use in expression (2) a momentum
extended scheme such that k ∈ (−∞, +∞).

We consider weight distributions (2) that refer to the
Hubbard model in a 1D lattice with periodic boundary
conditions and units such that the Planck constant and
electronic lattice constant are unity,

Ĥ = −t
∑
j, σ

[c†
j, σ c j+1, σ + h.c.] + U

∑
j

n̂ j,↑n̂ j,↓. (3)

3
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Here c†
j, σ (c j, σ ) creates (annihilates) one spin-projection

σ =↑, ↓ electron at site j = 1, 2, . . . , Na and n̂ j, σ =
c†

j, σ c j, σ . Let N = N↑ + N↓ be the electronic number, Na

the number of lattice sites, and nσ = Nσ /L = Nσ /Na . Na is
assumed to be even and very large. The electronic densities
n = n↑ + n↓ and spin densities m = n↑ − n↓ are in the
ranges 0 < n < 1 and 0 � m < n, respectively. Except
for corrections of order of 1/L, the Fermi momenta are given
by kF = πn/2 and kFσ = πnσ .

The concept of a rotated electron plays a key role in
the pseudofermion description. Concerning its relation to
the holons, spinons, and c0 pseudoparticles whose occupancy
configurations describe the energy eigenstates of the model (3),
see [14]. Our studies do not involve directly the holons
and spinons as defined in that reference. The charge cν
pseudofermions (and spin sν pseudofermions) such that ν =
1, 2, 3, . . . are 2ν-holon (and 2ν-spinon) composite quantum
objects whose discrete momentum values are slightly shifted
relative to those of the corresponding cν pseudoparticles (and
spin sν pseudoparticles) studied in [14, 15]. Such momentum
shifts cancel exactly the residual-interaction terms of the
pseudoparticle energy spectrum. Otherwise, pseudoparticles
and pseudofermions have the same properties.

According to the PDT of [2, 7], the charge c0
pseudofermions and spin s1 pseudofermions play the major
role in the spectral properties. The holons (and spinons) which
are not part of 2ν-holon composite cν pseudofermions (and
2ν-spinon composite sν pseudofermions) are the Yang holons
(and HL spinons). These are invariant under the electron–
rotated-electron unitary transformation and hence have a non-
interacting character and do not contribute to the matrix
elements between energy eigenstates of the spectral-weight
distributions studied in this paper. We denote the numbers of
αν pseudofermions and αν pseudofermion holes by Nαν and
Nh

αν , respectively, where α = c, s and ν = 0, 1, 2, . . . for
α = c and ν = 1, 2, . . . for α = s. (The value of Nh

αν is given
in equations (B7) and (B8) of [14].)

As in [2], we use in this paper the notation αν �= c0, s1
branches, which refers to all αν branches except the c0 and
s1 branches. Moreover, the summations (products)

∑
αν ,∑

αν=c0, s1, and
∑

αν �=c0, s1 (
∏

αν ,
∏

αν=c0, s1, and
∏

αν �=c0, s1)
run over all αν branches with finite αν pseudofermion
occupancy in the corresponding state or subspace, the c0
and s1 branches only, and all αν branches with finite
αν pseudofermion occupancy in the corresponding state or
subspace except the c0 and s1 branches, respectively.

The pseudofermion description refers to a Hilbert
subspace called the pseudofermion subspace (PS) in [2], in
which the N -electron excitations Ôl

N (k)|GS〉 are contained.
The PS is spanned by the initial ground state and the excited-
energy eigenstates originated from it by creation, annihilation,
and particle–hole processes involving the generation of a
finite number of active pseudofermion scattering centres, Yang
holons, and HL spinons plus a vanishing or small density of
low-energy and small-momentum αν = c0, s1 pseudofermion
particle–hole processes. It is convenient to classify these
processes into three types, called processes (A), (B), and (C),
as further discussed in the ensuing section.

The αν-pseudofermion discrete canonical-momentum
values have a functional character and read q̄ j = q j +
Q


αν(q j)/L = [2π/L]I αν
j + Q


αν(q j)/L, where j =
1, 2, . . . , N∗

αν and N∗
αν = Nαν + Nh

αν . Here Q

α, ν(q j)/2 is

an αν pseudofermion scattering phase shift given by

Q

αν(q j)/2 =

∑
α′ν′

N∗
α′ν′∑

j ′=1

π 
αν, α′ν′(q j , q j ′)

× �Nα′ν′(q j ′); j = 1, 2, . . . , N∗
αν , (4)

where �Nαν (q j) = �Nαν(q̄ j) is the bare-momentum
distribution function deviation �Nαν(q j) = Nαν (q j) −
N0

αν (q j) corresponding to the excited-energy eigenstate. This
deviation is expressed in terms of the bare momentum q j =
[2π I αν

j ]/L, which is carried by the αν pseudoparticles, where
I αν

j are the quantum numbers provided by the Bethe-ansatz
solution [14].

Although the αν pseudoparticles carry bare momentum
q j , one can also label the corresponding αν pseudofermions
by such a bare momentum. When we refer to the
pseudofermion bare momentum q j , we mean that q j is the
bare-momentum value that corresponds to the pseudofermion
canonical momentum q̄ j = q j + Q


αν(q j)/L. For the ground
state the pseudofermion numbers are given by Nc0 = N ,
Ns1 = N↓, Nαν = 0 for αν �= c0, s1. We call N0

c0
and N0

s1 the ground-state c0 and s1 pseudofermion numbers,
respectively. As mentioned in the previous section, the ground-
state αν = c0, s1 bare-momentum distribution functions are
such that there is pseudofermion occupancy for |q| � q0

Fαν

and unoccupancy for q0
Fαν < |q| � q0

αν , where in the
thermodynamic limit the Fermi-point values are given by

q0
Fc0 = 2kF; q0

Fs1 = kF↓. (5)

Moreover, for that state the limiting bare-momentum values of
both the αν = c0, s1 and αν �= c0, s1 bands read

q0
c0 = π; q0

s1 = kF↑; q0
cν = [π − 2kF],

ν > 0; q0
sν = [kF↑ − kF↓], ν > 1.

(6)

The ground-state αν = c0, s1 densely packed bare-
momentum distribution functions N0

αν (q j) are given in
equations (C.1)–(C.3) of [14].

Under the ground-state–excited-energy-eigenstate transi-
tions, the αν pseudofermions and αν pseudofermion holes
undergo elementary scattering events with the α′ν ′ pseud-
ofermions and α′ν ′ pseudofermion holes created in these tran-
sitions [2]. This leads to the elementary two-pseudofermion
phase shifts π 
αν, α′ν′ (q j , q j ′) on the right-hand side of the
overall scattering phase shift (4), as further discussed in [23].
Moreover, within the PDT the overall αν pseudofermion or
hole phase shift,

Qαν(q j)/2 = Q0
αν/2 + Q


αν(q j)/2, (7)

controls the spectral-weight distributions. Here Qαν(q j)/L
gives the shift in the discrete canonical-momentum value q̄ j

that arises due to the transition from the ground state to
an excited-energy eigenstate and Q0

αν/2 can have the values

4
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Q0
αν/2 = 0, ±π/2 [2, 23]. In this paper we use boundary

conditions such that Q0
αν/2 = 0, −sgn(k) π/2, where k is the

excited-state momentum relative to that of the initial ground
state. Here we assume that for the latter state N/2 and N are
odd and even numbers, respectively. Q0

αν/L gives the shift in
the discrete bare-momentum value q j that arises as a result of
the same transition.

The αν pseudofermion creation and annihilation operators
f †
q̄ j , αν and fq̄ j , αν , respectively, have exotic anticommutation

relations [2]. These anticommutators involve the overall phase
shifts (7) and play a key role in the spectral properties. There
are corresponding local operators f †

x j , αν and fx j , αν . Here x j

where j = 1, 2, ..., N∗
αν are the spatial coordinates of an αν

effective lattice with N∗
αν sites. Each of the Nαν occupied

sites of such a lattice corresponds to a well defined occupancy
configuration of 2ν sites of the rotated-electron lattice. It
turns out that the operators f †

x j , αν and fx j , αν have simple
anticommutation relations. Indeed, the exotic anticommutation
relations of the operators and f †

q̄ j , αν and fq̄ j , αν result from
the form of the discrete canonical-momentum values q̄ j =
q j + Q


αν(q j)/L = [2π/L]I αν
j + Q


αν(q j)/L.

There is a simple relation between the f †
x j , c0 and fx j , c0

operators and those of the rotated electrons such that the
former operators have anticommutation relations. To show
that for branches αν �= c0 the operators f †

x j , αν and fx j , αν

also have anticommutation relations is a much more involved
problem. The composite αν �= c0 pseudofermions emerge
from corresponding αν �= c0 bond particles through a suitable
Jordan–Wigner transformation [24]. The point is that such
αν �= c0 bond particles live on the corresponding αν effective
lattice and behave there as hard-core bosons. That interesting
problem will be studied in detail elsewhere.

The charge and spin pseudofermion Fermi-point group
velocities vc0 and vs1 also play an important role in our study.
The velocity vαν with αν = c0, s1 is a particular case of the
momentum dependent group velocity vαν(q). Such velocities
appear in all the spectral-weight distribution expressions of the
metallic phase and are given by

vαν(q) = ∂εαν(q)

∂q
, all branches;

vαν ≡ vαν(q
0
Fαν), αν = c0, s1.

(8)

In the first expression εαν(q) stands for the αν pseudofermion
energy dispersion defined by equations (18)–(20) of [2]. In this
paper and its appendix we often use a convention according to
which the ᾱν̄ = c0, s1 branch is that whose pseudofermion
Fermi-point group velocity vᾱν̄ is such that

vᾱν̄ = min{vc0, vs1}. (9)

3. Spectral-weight distributions for the metallic
phase and 0 � m < n

3.1. General spectral-function expressions

The pseudofermion elementary processes that generate the PS
from the initial ground state belong to three types.

(a) Finite-energy and finite-momentum elementary c0 and s1
pseudofermion processes away from the corresponding
Fermi points involving creation or annihilation of a finite
number of pseudofermions plus creation of αν �= c0, s1
pseudofermions with bare-momentum values different
from the limiting bare-momentum values ±q0

αν .
(b) Zero-energy and finite-momentum processes that change

the number of c0 and s1 pseudofermions at the ι =
sgn(q) 1 = +1 right and ι = sgn(q) 1 = −1 left
c0 and s1 Fermi points—these processes transform the
ground-state densely packed bare-momentum occupancy
configuration into an excited-state densely packed bare-
momentum occupancy configuration. Furthermore,
creation of a finite number of independent −1/2 holons
and independent −1/2 spinons, including −1/2 Yang
holons, −1/2 HL spinons, and −1/2 holons and −1/2
spinons associated with cν pseudofermions of limiting
bare momentum q = ±q0

cν = ±[π − 2kF] and sν
pseudofermions of limiting bare momentum q = ±q0

sν =
±[kF↑ − kF↓], respectively.

(c) Low-energy and small-momentum elementary c0 and s1
pseudofermion particle–hole processes in the vicinity of
the ι = sgn(q) 1 = +1 right and ι = sgn(q) 1 =
−1 left c0 and s1 Fermi points, relative to the excited-
state αν = c0, s1 pseudofermion densely packed bare-
momentum occupancy configurations generated by the
above elementary processes (B).

Such processes generate excitations which can be
classified by the values of a set of numbers and number
deviations. For instance, NphNF

αν is the number of finite-
momentum and finite-energy αν = c0, s1 pseudofermion
particle–hole processes of type (A). The quantum number
ι = sgn(q)1 = ±1 refers to the right pseudofermion movers
(ι = +1) and left pseudofermion movers (ι = −1) and
�NF

αν, ι such that �NF
αν, ±1 is the deviation in the number

of αν pseudofermions at the right (+1) and left (−1) Fermi
points generated by the elementary processes (B). In turn,
the deviation in the number of αν = c0, s1 pseudofermions
created or annihilated away from these points by elementary
processes (A) is denoted by �NNF

αν .
The actual number of αν pseudofermions created or

annihilated at the right (+1) and left (−1) Fermi points by
processes (B) is denoted by �N0,F

αν, ±1. It is such that �NF
αν, ι =

�N0,F
αν, ι + ι Q0

αν/2π , where Q0
αν/2 is the scattering-less phase

shift on the right-hand side of equation (7). Furthermore, NF
αν, ι

refers to the αν �= c0, s1 branches and is the number of αν

pseudofermions of limiting bare momentum q = ι q0
αν such

that ι = ±1 created by the elementary processes (B). The
number of αν pseudofermions created away from the limiting
bare-momentum values by processes (A) is called NNF

αν .
A ground-state–excited-energy-eigenstate transition gen-

erated by elementary processes (A) and (B) leads to the en-
ergy and momentum spectrum l�E and l�P given in equa-
tions (28) and (29) of [2], respectively, where l = +1 or −1
depending on the specific spectral function (2) under consid-
eration. Each such excited state is associated with a well de-
fined point (l�E, l�P) in the (k, ω)-plane. A key property
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of the PDT is that the set or tower of excited states generated
by elementary processes (C) from each excited-energy eigen-
state generated by processes (A) and (B) have the same val-
ues for the two charge parameters 2�±1

c0 and two spin param-
eters 2�±1

s1 of equation (1) as the latter state. The transition
to this tower of excited states generates the spectral weight in
the vicinity of the corresponding point (l�E, l�P). Thus, this
weight is associated with the same value of the following func-
tional, which plays a major role in the spectral properties:

ζ0 = 2�+1
c0 + 2�−1

c0 + 2�+1
s1 + 2�−1

s1 ,

2�ι
αν =

(
ι �NF

αν, ι + Q

αν(ι q0

Fαν)

2π

)2

,

(10)

where αν = c0, s1 and ι = ±1. Note that ζ0 equals the sum
of the four parameters of equation (1), which can be expressed
in terms of the overall scattering phase shift of equation (4),
as given in the second expression of equation (10). Such
parameters are functionals of the pseudofermion occupancy
configurations which describe the excited states generated by
elementary processes (A) and (B).

The corresponding functional expressions are given in
equations (12) and (40) of [2]. Thus, for each excited state
generated from the initial ground state by processes (A) and
(B) there is a subspace spanned by the set of excited states
generated by processes (C) from the former excited state.
Given the linear αν = c0, s1 pseudofermion energy dispersion
near the Fermi points, processes (C) lead to small momentum
and energy values such that

k ′ =
∑

αν=c0, s1

∑
ι=±1

ι
2π

L
mαν, ι;

ω′ =
∑

αν=c0,s1

∑
ι=±1

2π

L
vανmαν,ι.

(11)

Here mαν, ι is the number of elementary αν pseudofermion
particle–hole processes of momentum ι[2π/L]. Thus,
elementary processes (C) generate a set of excited-energy
eigenstates with energy l�E and momentum l�P given by
those of the initial excited state generated from the ground
state by processes (A) and (B), plus the small energy ω′ and
momentum k ′ provided in equation (11).

Within the PDT the general N -electron spectral func-
tions (2) factorize in terms of αν pseudofermion spectral func-
tions. The probability amplitude A(0,0)

αν appears in the expres-
sions of the latter functions for αν = c0, s1. It is associated
with the canonical-momentum densely packed configurations
generated by elementary processes (A) and (B) after the ma-
trix elements between the ground state and the excited states
generated by these processes are computed. Such a probabil-
ity amplitude corresponds to the αν = c0, s1 pseudofermion
spectral-function lowest-peak weight given in equation (48)
of [2]. It has the following approximate behaviour:

A(0,0)
αν ≈

∏
ι=±1

A(0,0)
αν, ι

[
1 + O

( 1

Na

)]
,

A(0,0)
αν, ι = fαν, ι(

Na S0
αν

)−1/2+2�ι
αν

; αν = c0, s1; ι = ±1.

(12)

Here 2�ι
αν is the functional given in equation (1), and fαν, ι

reads

fαν, ι =
√

f
(

Qαν(ιq0
Fαν) + sgn(k)π

)
;

fαν =
∏
ι=±1

fαν, ι; αν = c0, s1.

(13)

In this expression, k stands for the excited-state momentum
relative to the initial ground state, f (Q) = f (−Q) is the
function defined in [17], which occurs on the right-hand side
of equation (24) of that reference, and fαν appears in spectral-
function expressions introduced below. Moreover, S0

αν is an n,
m, and U/t dependent constant such that S0

c0 S0
s1 → 1 both for

U/t → 0 and for U/t → ∞ and m → 0. (From [17] we
learn that S0

c0 → sin(πn) for U/t → ∞ and m → 0, and thus
S0

s1 → 1/ sin(πn) in such a limit.) It is useful to introduce the
following quantity:

D0 =
∏

αν=c0, s1

S0
αν fαν

(S0
αν)

[2�+1
αν +2�−1

αν ] . (14)

Another important piece of the αν = c0, s1
pseudofermion spectral functions is the relative weight
aαν, ι(mαν, ι) generated by the elementary processes (C) in the
vicinity of the right (ι = +1) and left (ι = −1) Fermi
points. When 2�ι

αν > 0 the weight aαν, ι(mαν, ι) and its
asymptotic expression are given in equations (52) and (55)
of [2], respectively. The point is that when the excited states
generated by processes (A) and (B) are such that 2�ι

αν = 0 the
relative weight aαν, ι(mαν, ι) reads instead

aαν, ι(mαν, ι) = δmαν, ι,0;
2�ι

αν = 0; αν = c0, s1; ι = ±1.
(15)

Since for densities in the range 0 < n < 1 and 0 < m < n the
two charge parameters 2�±1

c0 and two spin parameters 2�±1
s1

are finite for all excited states, this case was not considered in
the studies of [2].

As further discussed below, the general N -electron
spectral function given in equation (2) can be expressed in
terms of the charge c0 and spin s1 spectral functions provided
in equation (56) of [2]. Here we express the latter functions as
follows:

Bl,i
Qαν

(k ′, ω′)

= Na

2π

∫ +∞

−∞
dk ′′

∫ +∞

−∞
dω′′ Bl,ι,i

Qαν
(k ′ − k ′′, ω′ − ω′′)

× Bl,−ι,i
Qαν

(
k ′′, ω′′

)
; αν = c0, s1; ι = ±1.

(16)

The studies of [2] refer to the case where the two charge
parameters 2�±1

c0 and two spin parameters 2�±1
s1 are finite. In

that case the four relative weights aαν, ι(mαν, ι) such that αν =
c0, s1 and ι = ±1 and their asymptotic expressions are of the
form provided in equations (52) and (55) of [2], respectively,
and thus the functions Bl,ι,i

Qαν
(k ′, ω′) on the right-hand

6
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side of equation (16) are given by [2]

Bl,ι,i
Qαν

(k ′, ω′) = A(0,0)
αν, ι

vαν

aαν, ι

( l ω′

2πvαν/Na

)
δ

(
k ′ − ι ω′

vαν

)

≈ fαν, ι

vαν �(2�ι
αν)

�(lω′)√
Na S0

αν

( lω′

2π vαν S0
αν

)2�ι
αν−1

× δ
(

k ′ − ι ω′

vαν

)
, (17)

where αν = c0, s1 and ι = ±1. The second expression
corresponds to the asymptotic behaviour valid for small finite
values of lω′.

However, when 2�ι
αν = 0 the corresponding relative

weight aαν, ι(mαν, ι) is of the form provided in equation (15)
and thus the spectral function Bl,ι,i

Qαν
(k ′, ω′) instead of being

given by equation (17) reads

Bl,ι,i
Qαν

(k ′, ω′) = 2π

Na
A(0,0)

αν, ι δ(k ′) δ(ω′)

≈ 2π fαν, ι

√
S0

αν

Na
δ(k ′) δ(ω′); αν = c0, s1;

ι = ±1. (18)

In order to reach the correct spectral-function expressions
for all electronic densities of the metallic phase and for m → 0,
several cases must be considered. The first corresponds to
excited states such that the two charge parameters 2�±1

c0 and
two spin parameters 2�±1

s1 are finite. The two functions on
the right-hand side of equation (16) are of the form given in
equation (17), and thus we find

Bl,i
Qαν

(k ′, ω′) = L

4πvαν

A(0,0)
αν

∏
ι=±1

aαν, ι

(
l[ω′ + ι vαν k ′]

4πvαν/Na

)

≈ fαν

4π vαν S0
αν

∏
ι=±1

�(l[ω′ + ι vαν k ′])
�(2�ι

αν)

×
(

l[ω′ + ι vαν k ′]
4π vαν S0

αν

)2�ι
αν−1

, (19)

where αν = c0, s1. The second expression corresponds
to the asymptotic behaviour valid for small finite values of
l[ω′ + ι vαν k ′]. This function is that already given in equation
(56) of [2]. (See the note4 concerning a discrepancy of
a factor of two between the function given here and that
provided in equation (56) of [2] and how a misprint in the latter
equation becomes an error, by propagating to other expressions
of [2, 7].)

The second case occurs when the excited states are such
that for the functions on the right-hand side of equation (16)
one has that 2�ι

αν > 0 and 2�−ι
αν = 0. Then one must use in

that equation the expression (17) for the function Bl,ι,i
Qαν

(k ′, ω′)

4 While the first expression provided in equation (56) of [2] is correct, there
is a misprint in its second expression. It must be multiplied by two, which
gives our expressions of equation (19). Such a misprint became an error that
propagated to expression (62) of that reference, which must be multiplied
by four. This gives our expression (A.1) of the appendix for vc0 > vs1.
Furthermore, it propagated to the first paper of [7] so that the pre-factor given
in equation (50) of the latter paper must also be multiplied by four. Finally,
while the exponent of expression (73) of [2] is correct, the pre-factor is a poor
approximation.

and that given in equation (18) for the function Bl,−ι,i
Qαν

(k ′, ω′).
This leads to the following expression for the function on the
left-hand side of equation (16):

Bl,i
Qαν

(k ′, ω′) = A(0,0)
αν

vαν

aαν, ι

( l ω′

2πvαν/Na

)
δ
(

k ′ − ι ω′

vαν

)

≈ fαν

vαν �(2�ι
αν)

�(lω′)
( lω′

2π vαν S0
αν

)2�ι
αν−1

× δ
(

k ′ − ι ω′

vαν

)
, (20)

where αν = c0, s1 and ι = ±1.
Finally, the third case refers to excited states such that for

the functions on the right-hand side of equation (16) one has
that 2�ι

αν = 2�−ι
αν = 0. In this case one must use in that

equation the expression (18) for both the functions Bl,ι,i
Qαν

(k ′, ω′)
and Bl,−ι,i

Qαν
(k ′, ω′). One then reaches the following expression

for the function on the left-hand side of equation (16):

Bl,i
Qαν

(k ′, ω′) = 2π

Na
A(0,0)

αν δ(k ′) δ(ω′)

≈ 2π fαν S0
αν δ(k ′) δ(ω′); αν = c0, s1. (21)

The general PDT expression for the N -electron spectral
function given in equation (2) reads [2]

Bl
N (k, ω)

=
∞∑

i=0

cl
i

∑
{�Nαν}, {Lα, −1/2}

⎡
⎣ ∑

{N phNF
αν }, {�N F

αν, ι}, {N F
αν, ι}

Bl,i (k, ω)

⎤
⎦ ,

(22)

where cl
0 = 1, l = ±1, and for densities 0 < n < 1 the

summation over the numbers NphNF
αν is limited to finite values.

On the right-hand side of equation (22), cl
i is the constant of

the operator expressions given in equations (32)–(34) of [3]
such that cl

i → 0 as U/t → ∞ for i > 0 and the function
Bl,i (k, ω) is defined in equation (44) of [2]. The latter function
is fully defined by the related function B̆l,i (�ω, v). However,
the second expression for B̆l,i (�ω, v) given in equation (45)
of [2] is only valid for vc0 > vs1. For finite values of U/t this
excludes electronic densities in the vicinity of unity.

Generalization of B̆l,i (�ω, v) for the whole range of
electronic densities of the metallic phase, including densities
such that the spin and charge velocities obey the inequality
vs1 > vc0, leads to the following expression:

B̆l,i (�ω, v) = sgn(v)

2π

∫ �ω

0
dω′

∫ + sgn(v)�ω/vαν

− sgn(v)�ω/vαν

dk ′

× Bl,i
Qᾱν̄

(
�ω/v − k ′,�ω − ω′

)
Bl,i

Qαν

(
k ′, ω′

)
. (23)

In this equation, in those provided in the appendix, and in the
whole of our analysis until section 3.2 we use a notation for the
charge branch c0 and spin branch s1 such that αν = c0, s1
when the branch index ᾱν̄ defined by equation (9) reads ᾱν̄ =
s1, c0, respectively. Moreover, in equation (23) l = +1 or
−1 according to the N -electron spectral function (2) under
consideration, �ω = (ω − l�E), �k = (k − l�P), and l�E
and l�P correspond to the general energy and momentum
spectra given in equations (28) and (29) of [2], respectively,

7
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which is generated by elementary processes (A) and (B),
i = 0, 1, 2, . . ., and for i > 0 the index i =
1, 2, . . . is a positive integer number which increases for
increasing values of the number of extra pairs of creation
and annihilation rotated-electron operators in the expressions
of the pseudofermion operators associated with the function
B̆l,i (�ω, v) relative to that of the pseudofermion operators of
the i = 0 function B̆l,0(�ω, v) [2]. Expression (23) is valid
for the whole (k, ω)-plane, except for k and ω values such that
ω ≈ ι vαν(k − lk0) + lω0, where αν = c0, s1, ι = ±1, ω0 and
k0 are provided in equations (32) and (34) of [2].

The velocity v appearing in the argument of the
function (23) plays an important role in our study and is given
by

v = �ω

�k
= (ω − l�E)

(k − l�P)
; sgn(v) 1 = sgn(�k) l;

|v| > vᾱν̄ . (24)

The inequality |v| > vᾱν̄ follows from the structure of the
spectrum of equation (31) of [2].

When at least one of the two parameters 2�±1
αν and two

parameters 2�±1
ᾱν̄ is finite, use of the general expression (23)

for the function B̆l,i (�ω, v) for small finite values of l�ω =
l(ω − l�E) with Bl,i

Qαν
(k ′, ω′) and Bl,i

Qᾱν̄
(k ′, ω′) equalling the

suitable expressions provided in equations (19)–(21) leads
to the following asymptotic behaviour for that convolution
function:

B̆l,i (�ω, v) ≈ F0(1/v)

4π
√

vc0 vs1
�
(

l�ω
) ( l�ω

4π
√

vc0 vs1

)−2+ζ0

.

(25)
Here i = 0, 1, 2, . . ., l = ±1, ζ0 is the functional provided
in equation (10), and the pre-factor function F0(z) is given
in the appendix. In turn, if all the above four parameters
vanish, we find by use of expression (23) with Bl,i

Qαν
(k ′, ω′) and

Bl,i
Qᾱν̄

(k ′, ω′) of the form given in equation (21) that

B̆l,i (�ω, v) = B̄l,i (�ω,�k) = 2π D0 δ(�ω)δ(�k), (26)

where D0 is defined in equation (14), in agreement with the
first expression of equation (59) of [2] for ζ0 = 0.

Depending on the values of the two parameters 2�±1
αν

and two parameters 2�±1
ᾱν̄ , we consider in the appendix seven

cases where by use of equations (19)–(21), (23), and (25) a
set of alternative expressions for the pre-factor function F0(z)
on the right-hand side of the latter equation can be derived
and is given in the appendix. Expressions (A.1)–(A.7) of the
appendix provide a generalization of the pre-factor function
F0(z) given in equation (62) of [2]. The latter function
corresponds to the general function (A.1) of the appendix for
αν = c0 (see footnote 4). The recent studies of [4] on the
finite-energy spectral features of the organic compound TTF-
TCNQ use the functions (A.1)–(A.7) of the appendix derived
in this paper.

Importantly, general spectral-function expressions for all
electronic densities of the metallic phase are obtained by
replacing the spin velocity vs1 by vᾱν̄ in the limits of the
variable z integrations of expressions (66) and (B.14) of [2] and
both in the limits of the variable z integrations and arguments

of the theta-functions of expressions (71), (B.17), and (B.18) of
the same reference. After such replacements, equations (66),
(68), (70), and (71) of [2] with the pre-factor function F0(z)
given in equations (A.1)–(A.7) of the appendix provide general
spectral-function expressions for all electronic densities of the
metallic phase and spin densities in the range 0 � m <

n. However, note that, while the branch index ᾱν̄ is that
defined by equation (9), the branch indices αν and α′ν ′ of
equations (66) and (B.14) of [2] correspond to the two created
quantum objects and in contrast to the branch index αν of
equations (23)–(26) and (A.1)–(A.7) of the appendix there are
no restrictions imposing that such branch indices are different
or equal to the branch index ᾱν̄, the same applying to the
branch index αν of equations (70), (71), (B.17), and (B.18)
of that reference.

It is straightforward to show that the double Fourier
transform of the function (18) equals that of the function (17)
as 2�ι

αν → 0. It follows that the asymptotic expression of
the correlation function given in equation (32) of [7] is of
the general form provided in equation (52) of that reference
independently of whether all four parameters 2�ι

αν where
αν = c0, s1 and ι = ±1 are finite, or some of these
parameters vanish. Thus, the different expressions (A.1)–(A.7)
of the appendix for the pre-factor F0(z) of the convolution
function (25) are not associated with different pre-factors for
the corresponding correlation-function expression (52) of [7].
The pre-factor of the latter function is always of the form given
in equation (50) of that reference (see footnote 4).

3.2. Explicit spectral-function expressions in the vicinity of the
border lines

The singular features of the N -electron spectral functions (2)
are of power-law type. The power-law branch-line singular
features of general form given in equations (68) and (71)
of [2] are controlled by non-classic interaction, density, and
momentum dependent exponents. The spectral feature of
general form given in equations (66) of that reference can
also include power-law singular features called border lines.
However, the studies of [2] did not provide an explicit general
expression for the k and ω dependence in the vicinity of the
border lines. Here we provide such an expression and find that
for the border lines the power-law exponent has an universal
value given by −1/2.

The shape ω = ωBL(k) of a border line is defined by the
following parametric equations [2]:

ωBL(k) = l[ ω0 + c′
1 εα′ν′ (q ′) + c′′

1 εα′′ν′′(q ′′)]
× δvα′ν′ (q ′), vα′′ν′′ (q ′′),

k = lkα′ν′, α′′ν′′ (q ′, q ′′) δvα′ν′ (q ′), vα′′ν′′ (q ′′).

(27)

Here q ′ and q ′′ are the bare-momentum values of the α′ν ′
and α′′ν ′′, respectively, pseudofermion or pseudofermion-hole
scattering centres created by processes (A), c′

1, c′′
1 = +1 for

pseudofermion creation and c′
1, c′′

1 = −1 for pseudofermion-
hole creation, ω0 is the finite-energy parameter given in
equation (32) of [2], and kα′ν′, α′′ν′′ (q ′, q ′′) is the momentum
spectrum provided in equations (64) and (65) of that reference.
As for equations (66) and (B.14) of [2] and in contrast to

8
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Figure 1. Full theoretical line shape of the one-electron removal
spectral-weight distribution found in [4] to fit the corresponding
spectral features of TTF-TCNQ. The spectrum shown here is rotated
relative to that shown in figure 2 of that reference. It includes both
the TTF related spectral features for n = 1.41; t = 0.35 eV;
U/t = 5.61 and those of TCNQ for n = 0.59; t = 0.40 eV;
U/t = 4.90, respectively.

the branch index αν of equations (23)–(26) and (A.1)–(A.7)
of the appendix, there are no restrictions imposing that the
branch indices α′ν ′ and α′′ν ′′ of the two created scattering
centres are different or equal to the branch index ᾱν̄ defined
by equation (9).

By use of methods similar to those used in [2] for other
weight distributions, we find that the spectral function has the
following singular behaviour in the vicinity and just below
(l = +1) or above (l = −1) the border line:

Bl
N (k, ω) ≈

2 �
(
� − l[ωBL(k) − ω]

)
π Cc Cs ζ0(q ′, q ′′)

√|aα′ν′ (q ′)| + |aα′′ν′′(q ′′)|
×
[∫ +1/vᾱν̄

−1/vᾱν̄

dz F0(z)

]

×
( �

4π
√

vc0 vs1

)ζ0(q ′, q ′′)
(

2l[ωBL(k) − ω]
vc0 vs1

)− 1
2

, (28)

where aαν(q) = ∂vαν(q)/∂q . In turn, just above (l = +1) or
below (l = −1) the line the weight distribution reads

Bl
N (k, ω) ≈

2 �
(
� − l[ω − ωBL(k)]

)
π Cc Cs ζ0(q ′, q ′′)

√|aα′ν′ (q ′)| + |aα′′ν′′(q ′′)|

×
{

�

(
vᾱν̄

[
1 − l[ω − ωBL(k)]

�

]
− |vα′ν′(q ′)|

)

×
∫ 1

vᾱν̄

−1
vᾱν̄

dz F0(z) + sgn(q ′)

× θ

(
|vα′ν′ (q ′)| − vᾱν̄

[
1 − l[ω − ωBL(k)]

�

])

×
∫ 1

vα′ν′ (q′) (1− l[ω−ωBL (k)]
�

)

− sgn(q′ ) 1
vᾱν̄

dz F0(z)

}

×
[(

�

4π
√

vc0 vs1

)ζ0(q ′, q ′′)

−
(

l[ω − ωBL(k)]
4π

√
vc0 vs1 [1 − z vα′ν′(q ′)]

)ζ0(q ′, q ′′)]

×
(

2l[ω − ωBL(k)]
vc0 vs1

)− 1
2

, (29)

where θ(x) = 0 for x � 0 and θ(x) = 1 for x > 0, � is
the energy cutoff of elementary processes (C) defined in [2],
ζ0 = ζ0(q ′, q ′′) is the functional given in equation (10) for the
excited states which contribute to the weight distribution (66)
of that reference, and Cc and Cs are defined in equation (68)
of [3].

4. Applications of the pseudofermion dynamical
theory to the spectrum of TTF-TCNQ

As discussed in [4], the spectral-weight distribution of TTF-
TCNQ is fully determined by the occupancy configurations
of the c and s1 pseudofermions in the one-electron excited
states. The studies of that reference reveal that for electronic
density n = 1.41 the electron removal spectrum calculated
for t = 0.35 eV and U = 1.96 eV (U/t = 5.61)
yields the best agreement with the TTF related experimental
dispersions. In turn, for electronic density n = 0.59 an
almost perfect agreement with the TCNQ related experimental
dispersions is reached for the finite-energy-electron-removal
spectrum calculated for t = 0.40 eV and U = 1.96 eV
(U/t = 4.90) [4, 18].

If one profits from the model particle–hole symmetry, one
can achieve the one-electron removal spectrum at n = 1.41 and
a given U/t value from the one-electron addition spectrum at
n = 0.59 and the same value of U/t . The full theoretical line
shape of the one-electron removal spectral-weight distribution
found in [4] to fit the corresponding spectral features of TTF-
TCNQ is shown in figure 1. Note that here such a spectrum is
rotated relative to that shown in figure 2 of that reference.

Let us consider the processes that contribute to the
spectrum of figure 1. Each of the corresponding spectral-
weight contributions to the full one-electron spectrum plotted

Figure 2. The region of the (k, ω) plane with a finite one-electron removal spectral weight obtained by running over all the momentum values
of the c0 and s1 momentum distribution deviations of equations (32) and (33) for U/t = 100, n = 0.59, and m → 0. The corresponding
branch and border lines are also plotted.

9
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in this figure are obtained by use of the PDT expressions
provided in the previous section and [2]. In addition to the
values of U/t and n specific to TTF-TCNQ, some of the
spectral contributions plotted below refer to variations in these
parameters. This allows us to study how the spectral features
evolve under such variations. The study of the spectral-
weight pieces contributing to the full spectrum plotted in
figure 1 allows the identification of the contributions from
the different expressions considered in the previous section
and [2], including the border-line expressions derived in this
paper and provided in equations (28) and (29).

The one-electron removal spectral-weight distribution of
figure 1 has two main contributions, referring to the TCNQ and
TTF related spectral features, respectively. The TCNQ related
spectrum is obtained by considering the one-electron removal
spectral function for n = 0.59; t = 0.40 eV; U/t = 4.90.
In turn, we profit from the model particle–hole symmetry
to derive the TTF related photoemission spectrum for n =
1.41; t = 0.35 eV; U/t = 5.61 from the corresponding
one-electron addition spectrum for n = 0.59; t = 0.35 eV;
U/t = 5.61 and changing the energy and momentum signs.

Nearly the whole one-electron removal spectral weight
corresponds to excitations described by the following
deviations from the ground-state Nαν αν pseudofermion
numbers and Nh

αν αν pseudofermion-hole numbers where
αν = c0, s1:

�Nc0 = −�Nh
c0 = −1; �Ns1 = −�Nh

s1 = −1,

(30)
and with the numbers Q0

αν/2 appearing on the right-hand side
of equation (7) reading

Q0
c0/2 = ±π/2; Q0

s1/2 = 0. (31)

If we consider bare-momentum continuum values, the general
deviations read

�Nc0(q) = −2π

L
δ(q − q1) − π

L
δ(q ∓ 2kF)

+ π

L
δ(q ± 2kF); q1 ∈ [−2kF, +2kF]

�Ns1(q) = −2π

L
δ(q − q ′

1); q ′
1 ∈ [−kF↓, +kF↓],

(32)

and thus

�Ns1(q) = −2π

L
δ(q − q ′

1); q ′
1 ∈ [−kF, +kF] (33)

as m → 0 for the initial ground state. Such deviations
and numbers (31) are then used in the general functional
Qαν(q j)/2 given in equation (7), whose functional Q


αν(q j)/2
is defined in equation (4). Such a procedure leads to

Qc0(q)/2 = ±π/2 − π
c0, c0(q, q1) − π
c0, c0(q,∓2kF)/2

+ π
c0, c0(q,±2kF)/2 − π
c0, s1(q, q ′
1), (34)

and

Qs1(q)/2 = −π
s1, c0(q, q1) − π
s1, c0(q,∓2kF)/2

+ π
s1, c0(q,±2kF)/2 − π
s1, s1(q, q ′
1), (35)

respectively.

The creation of the holes in the c0 and s1 bands whose
energy dispersions are plotted in figures 6 and 7 of [15],
respectively, corresponds for U/t = 100, n = 0.59, and m →
0 to a finite spectral-weight distribution in the region of the
(k, ω) plane shown in figure 2. The lines associated with the
branch lines and border lines in the finite-weight distribution
are also shown. Most lines of the one-electron spectral-
weight distribution plotted in figure 1 corresponding to power-
law singularities are of the branch-line type. In contrast
to the border-line singularities of expressions (28) and (29),
whose exponent −1/2 is momentum and U/t independent,
that controlling the branch-line power-law singularities is both
momentum and interaction dependent. Near a branch line the
general expression of the weight distribution is that provided
in equation (70) of [2]. Only for momentum and interaction
values where the exponent of that expression is negative is the
corresponding line called a branch line. For the limit m → 0
considered here the pre-factor function F0(z) appearing in
such a branch-line expression is that given in equations (A.1)–
(A.7) of the appendix. The expressions provided in the latter
equations are a generalization of the pre-factor function F0(z)
of equation (62) of [2]. The latter applies solely when 0 < n <

1 and 0 < m < n.
In figure 3 the same finite one-electron removal spectral-

weight region and corresponding lines are shown for the
U/t = 4.9, n = 0.59, and m → 0 values suitable for
the TCNQ related spectral features. Consistent with the U/t
dependence of the energy bandwidth of the s1 pseudofermion
dispersion plotted in figure 7 of [15], note that the border
line connecting the minimum energy points of the two c0-
branch lines has vc0(q) = vs1(q ′) ≈ 0. Upon decreasing the
U/t value to that U/t = 4.9 suitable for the TCNQ related
spectral features of figure 1, such a border line acquires a
curvature. The curvature achieved at U/t = 4.9 is that behind
the agreement found in [4] between the PDT predictions
and the photoemission spectral features of TTF-TCNQ. This
agreement is not obtained for larger or smaller values of U/t .

The (negative exponent) c0 branch line of the weight
distributions of figures 2 and 3 runs between the excitation
momenta −kF and 3kF and the s1 branch line from −kF

to kF. The corresponding power-law momentum dependent
exponents are plotted in figure 4 for n = 0.59, m → 0, and
several values of U/t . The c0 branch-line segment between
−kF and 0 is folded in the positive momentum region. While
the negative c0 branch-line exponent is smaller for large U/t ,
the negative s1 branch-line exponent is smaller for smaller
values of U/t . In order to illustrate how systematic variations
in the parameters lead to the evolution of the spectral features,
the same exponents as in figure 4 are plotted in figure 5 as a
function of momentum for U/t = 10, m → 0, and several
values of n.

The use in the general PDT expressions provided in this
paper and in [2] of the specific c0 and s1 momentum deviations
of equations (32) and (33) and corresponding functionals given
in equations (34) and (35) leads for U/t = 100, n = 0.59,
and m → 0 to the one-electron removal spectral-weight
distribution plotted in figure 6. Such a large-U/t distribution is
quite similar to the function B(k, ω) plotted in figure 1 of [16]

10
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Figure 3. The same region of the (k, ω) plane and branch and border lines as in figure 2 for U/t = 4.9, n = 0.59, and m → 0.

Figure 4. The value of the c0 and s1 branch line exponents of the one-electron removal weight distribution as a function of momentum for
n = 0.59, m → 0, and several magnitudes of U/t . The exponents of index c and s refer to the c0 and s1 branch lines, respectively.

Figure 5. The same exponents as in figure 4 as a function of momentum for U/t = 10, m → 0, and several values of n.

Figure 6. Full PDT one-electron removal spectral-weight distribution associated with the c0 and s1 momentum deviations of equations (32)
and (33) and corresponding functionals given in equations (34) and (35) for U/t = 100, n = 0.59, and m → 0.

for U/t → ∞. However, the method used in the studies of
the latter reference does not apply to finite values of U/t . The
one-electron removal spectral-weight distribution related to the
TCNQ spectral features is plotted in figure 7 and refers instead
to U/t = 4.9, n = 0.59, and m → 0. It is a part of the full
one-electron spectral-weight distribution plotted in figure 1.

Most singular behaviours of the one-electron removal
spectral-weight distributions of figures 6 and 7 refer to c0 and
s1 branch lines whose negative power-law exponent magnitude
depends on U/t and the momentum. These exponents
are plotted in figures 4 and 5. In turn, the weaker lines
connecting in figures 2 and 3 the minimum energy points

of the two c0 lines are border lines. The singularities of
the latter lines correspond instead to the U/t and momentum
independent exponent −1/2, as given in the general border-line
expressions (28) and (29) derived in this paper.

Next let us consider the lower-Hubbard-band one-electron
addition spectrum for n = 0.59; t = 0.35 eV; U/t = 5.61,
from which one derives the TTF related photoemission one-
electron removal spectrum for n = 1.41; t = 0.35 eV; U/t =
5.61. Nearly the whole lower-Hubbard-band one-electron
addition spectral weight corresponds to the excitations leading
to the following deviations from the ground-state Nαν αν

pseudofermion numbers and Nh
αν αν pseudofermion-hole

11
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Figure 7. The same PDT one-electron removal spectral-weight distribution as in figure 6 for the values U/t = 4.9, n = 0.59, and m → 0
suitable for the TCNQ related spectral features.

Figure 8. The region of the (k, ω) plane with a finite one-electron addition spectral weight obtained by running over all the momentum values
of the c0 and s1 momentum distribution deviations of equations (32) and (33) for U/t = 100, n = 0.59, and m → 0. The corresponding
branch and border lines are also shown.

numbers where αν = c0, s1:

�Nc0 = −�Nh
c0 = +1; �Ns1 = 0; �Nh

s1 = +1,

(36)
with the numbers Q0

αν/2 appearing on the right-hand side of
equation (7) reading

Q0
c0/2 = 0; Q0

s1/2 = ±π/2. (37)

If we choose the excitation branches that survive for m →
0, the general deviations are for bare-momentum continuum
values given by

�Nc0(q) = 2π

L
δ(q − q1); q1 ∈ [−2kF, +π]

and q1 ∈ [−π, +2kF]
�Ns1(q) = −2π

L
δ(q − q ′

1) + π

L
δ(q + kF↓)

+ π

L
δ(q − kF↓); q ′

1 ∈ [−kF↓, +kF↓], (38)

and thus

�Ns1(q) = −2π

L
δ(q − q ′

1) + π

L
δ(q − kF)

+ π

L
δ(q + kF); q ′

1 ∈ [−kF, +kF] (39)

as m → 0 for the initial ground state. As for the
above one-electron removal case, such deviations and the
numbers (37) are used in the general functional Qαν(q j)/2
provided in equation (7) and its functional Q


αν(q j)/2 defined
in equation (4). One then finds

Qc0(q)/2 = π
c0, c0(q, q1) − π
c0, s1(q, q ′
1)

+ π
c0, s1(q,−kF↓)/2 + π
c0, s1(q,+kF↓)/2, (40)

and

Qs1(q)/2 = ±π/2 + π
s1, c0(q, q1) − π
s1, s1(q, q ′
1)

+ π
s1, s1(q,−kF↓)/2 + π
s1, s1(q,+kF↓)/2, (41)

respectively.
The creation of the c0 pseudofermion and s1

pseudofermion-hole refers for U/t = 100, n = 0.59, and
m → 0 to a finite spectral-weight distribution in the region
of the (k, ω) plane shown in figure 8. The corresponding lines
associated with potential branch lines and border lines are also
plotted. In figure 9 the same finite spectral-weight region is
shown for the U/t = 5.61, n = 0.59, and m → 0 values
suitable for the TTF related spectral features. The border line
connecting the maximum energy point of the c0-branch line at
momentum 2kF with the maximum energy point of the finite
spectral-weight distribution at momentum π has in figure 8
vc0(q) = vs1(q ′) ≈ 0. Upon decreasing U/t to the value
U/t = 5.61 suitable for the TTF related spectral features of
figure 1, this border line acquires a curvature, as shown in fig-
ure 9. Such a curvature and corresponding value of U/t are
those behind the agreement achieved in [4] between the PDT
predictions and the photoemission spectral features of TTF-
TCNQ.

The c0 branch lines of the weight distributions of figures 8
and 9 run between the excitation momenta kF and π and
between 3kF and π , respectively. In turn, the maximum
extension of the s1 branch line is achieved for large values
of U/t when it runs from kF to near 3kF. The corresponding
power-law momentum dependent exponents are plotted in
figure 10 for n = 0.59, m → 0, and several values of
U/t . While the c0 branch lines exponents are negative, the
s1 branch-line exponent is negative for momenta smaller than
approximately kF and 2kF for U/t = 5.61 and U/t = 100,

12
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Figure 9. The same region of the (k, ω) plane and branch and border lines as in figure 8 for U/t = 5.61, n = 0.59, and m → 0.

Figure 10. The value of the c0 and s1 branch line exponents of the one-electron addition spectral-weight distribution as a function of
momentum for n = 0.59, m → 0, and several magnitudes of U/t . The exponents of index c and s refer to the c0 and s1 branch lines,
respectively.

Figure 11. The same exponents as in figure 10 as a function of momentum for U/t = 10, m → 0, and several values of n.

Figure 12. Full PDT one-electron addition spectral-weight distribution associated with the c0 and s1 momentum deviations of equations (38)
and (39) and corresponding functionals given in equations (40) and (41) for U/t = 100, n = 0.59, and m → 0.

respectively. Again in order to illustrate the evolution of
the spectral features upon varying the parameters, the same
exponents as in figure 10 are plotted in figure 11 as a function
of momentum for U/t = 10, m → 0, and several values
of n.

The general PDT spectral-function expressions provided
in this paper and in [2] lead for U/t = 100, n = 0.59, and
m → 0 and the specific c0 and s1 momentum deviations
of equations (38) and (39) and corresponding functionals
provided in equations (40) and (41) to the one-electron addition

spectral-weight distribution plotted in figure 12. The large-
U/t distribution plotted in that figure is quite similar to the
function A(k, ω) plotted in figure 1 of [16] for U/t → ∞. The
one-electron addition spectral-weight distribution related to the
TTF spectral features is plotted in figure 13 and refers instead
to U/t = 5.61, n = 0.59, and m → 0. After a straightforward
particle–hole transformation, the latter distribution leads to the
one-electron removal spectral-weight distribution suitable for
the TTF related spectral features. The latter corresponds to
U/t = 5.61, n = 1.41, and m → 0 and is part of the
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Figure 13. The same PDT one-electron addition spectral-weight distribution as in figure 8 for the values U/t = 5.61, n = 0.59, and m → 0
suitable for the TTF related spectral features.

full one-electron removal spectral-weight distribution plotted
in figure 1.

Most singular behaviours of the one-electron addition
spectral-weight distributions of figures 12 and 13 correspond
to c0 and s1 branch lines whose negative power-law exponents
are dependent on the U/t and momentum values. These
exponents are plotted in figures 10 and 11, and the power-
law singularities occur for the momenta where they are
negative. In turn, the line connecting in figures 8 and 9 the
maximum energy point of the c0-branch line at momentum
2kF with the maximum energy point of the finite spectral-
weight distribution at momentum π is a border line. The
singularities at the latter line correspond to the U/t and
momentum independent exponent −1/2 and near it the line
shape is of the general form provided in expressions (28)
and (29).

The four functionals 2�ι
αν where αν = c0, s1 and

ι = ±1 given in equation (10) are in the case of the one-
electron excitations behind the spectral-weight distribution
plotted in figure 1 fully controlled by the functionals provided
in equations (34) and (35) for U/t = 4.90, n = 0.59,
and m → 0 for the TCNQ related spectral features and in
equations (40) and (41) for U/t = 5.61, n = 0.59, and m → 0
for the TTF related spectral features. Since the magnitude of
the latter functionals is a function of two momenta q1 and q ′

1
of the deviations of equations (32) and (33) or equations (38)
and (39) belonging to the c0 and s1 band, respectively, it is
different for each point of the (k, ω) plane. Moreover, for some
of the latter points there are contributions from more than one
pair of momenta q1 and q ′

1.
We emphasize that depending on whether none, one, or

two of the two above momenta q1 and q ′
1 is or are Fermi

points, the corresponding functionals 2�ι
αν have different

forms and the excitation contributes to line shapes described
by the expressions provided in equations (66), (70), and (68)
of [2], respectively. All such expressions involve the pre-
factor function F0(z) given in equations (A.1)–(A.7) of the
appendix. The expressions provided in these equations are
a generalization of the pre-factor function F0(z) provided
in equation (62) of [2]. The latter applies when the four
functionals 2�ι

αν where αν = c0, s1 and ι = ±1 are
finite. However, in the limit m → 0 that the spectral-weight
distributions studied in this paper refer to, one must use in the
general expressions provided in equations (66), (70), and (68)
of [2] the pre-factor function F0(z) of equations (A.1)–(A.7) of
the appendix.

Note that the above mentioned general expressions
provided in equations (68) and (70) of [2] describe the
line shape near well defined points and lines in the (k, ω)

plane, respectively. When the corresponding exponents
are negative, such spectral features refer to the point and
branch-line singularities of the weight distributions plotted
in figures 1, 6, 7, 12, and 13. In turn, the only type of
singularity occurring within the line shape described by the
above mentioned general expression provided in equation (66)
of [2] is that associated with the border lines studied in the
previous section. The corresponding expressions (28) and (29)
refer to the vicinity of such border lines.

The complementary studies of [18] provide the specific
expressions of the four functionals 2�ι

αν where αν =
c0, s1 and ι = ±1 given in equation (10) for each of the
point and branch-line singularities of the TCNQ related one-
electron removal spectral features. The functionals given
in equations (40) and (41) are the basis of the derivation
of similar expressions for the TTF related spectral features.
These are straightforwardly derived by choosing particular
pairs of momentum values q1 and q ′

1 in the c0 and s1
momentum deviations of equations (38) and (39), respectively.
As discussed above, when such choices involve none, one,
or both such momentum pairs being a c0 or s1 Fermi point,
the corresponding four functionals 2�ι

αν have different forms
and the excitation contributes to line shapes described by the
expressions provided in equations (66), (70), and (68) of [2]
for the two-dimensional weight distribution, vicinity of branch
lines, and vicinity of singular points, respectively.

Finally, in figure 14 we plot the theoretical lines
corresponding to the sharpest spectral features considered in
figure 1 but omit the corresponding detailed spectral-weight
distribution over the (k, ω)-plane provided in that figure.
The figure also displays the experimental dispersions in the
electron removal spectrum of TTF-TCNQ as measured by
ARPES in [9]. The border line connecting the maximum
energy point of the c0-branch line at momentum 2kF with
the maximum energy point of the finite spectral-weight
distribution at momentum π in figure 9 leads upon the particle–
hole transformation to that called the c–s line in figure 14. In
turn the border line connecting the minimum energy points
of the two c0 lines of figure 3 associated with the TCNQ
related spectral features is not marked in figure 14, yet the
corresponding experimental spectral weight is clearly visible.

14



J. Phys.: Condens. Matter 20 (2008) 415103 J M P Carmelo et al

Figure 14. Experimental peak dispersions (grey scale) obtained by
ARPES on TTF-TCNQ along the easy-transport axis as given in
figure 7 of [9] and matching theoretical branch and border lines.
(The Z -point corresponds to the momentum k = π .) The
corresponding detailed theoretical spectral-weight distributions over
the whole (k, ω)-plane are plotted above in figure 1. While the
theoretical charge-c′′ and spin-s′′ branch lines and c–s border line
refer upon the particle–hole transformation to the TTF related
spectral features of figures 9 and 13, the charge-c, spin-s, and
charge-c′ branch lines correspond to the TCNQ related dispersions of
figures 3 and 7.

5. Discussion and concluding remarks

In this paper we have generalized the closed-form analytical
expressions for the finite-energy one- and two-electron
spectral-weight distributions of a 1D correlated metal with
on-site electronic repulsion introduced in [2] to all electronic
densities of the metallic phase and zero spin density. Moreover,
we have studied the particular form of the expressions derived
here for the processes contributing to the one-electron spectral-
weight distributions related to the TTF and TCNQ stacks of
molecules, respectively, in the quasi-1D organic compound
TTF-TCNQ investigated in [4]. The corresponding full
theoretical one-electron spectral-weight distribution plotted
in figure 1 agrees quantitatively for the whole experimental
energy bandwidth with the observed one-electron spectral
features shown in figure 14.

Other applications of our finite-energy spectral-weight-
distribution expressions to several materials, correlated
quantum systems, and spectral functions are in progress. This
includes the use of our theoretical results in the two-atom
spectral-weight distributions measured in 1D optical lattices.
Such studies also involve the Hubbard model but with the
electrons replaced by fermionic spin-1/2 atoms. While for
the one-electron features the branch lines play the major
role, in the case of two-electron spectral functions such as
the charge dynamical structure factor the two-pseudofermion
spectral features of the form given in equation (66) of [2] lead
to the main contributions. Generalization of that equation to
all electronic densities of the metallic phase and to zero spin

density involves the use of the following expression:

Bl
N (k, ω) ≈ 1

π Cc Cs

[∫ +1/vᾱν̄

−1/vᾱν̄

dz F0(z)

]

×
(

�

4π
√

vc0 vs1

)ζ0(q ′, q ′′)

×
√

vc0 vs1

ζ0(q ′, q ′′) |vα′ν′ (q ′) − vα′′ν′′(q ′′)| ; l = ±1, (42)

with the pre-factor function F0(z) given by the expres-
sions (A.1)–(A.7) of the appendix introduced in this paper. As
in equation (28), here q ′ and q ′′ stand for the bare-momentum
values of the created α′ν ′ and α′′ν ′′ pseudofermions or holes,
respectively. Indeed, the singular border-line function (28)
is a particular case of the general function provided in equa-
tion (42), which can be obtained by considering that vα′ν′(q ′) =
vα′′ν′′ (q ′′) in the latter equation.

For finite values of U/t the dominant term of the two-
electron spectral functions is often of the general form given in
equation (42). However, it can also occur that for intermediate
values of U/t such functions are the sum of two or three
dominant functions of the general form (42). The main
contributions correspond to the two created objects being such
that (i) α′ν ′ = c0 and α′′ν ′′ = s1, (ii) α′ν ′ = α′′ν ′′ = c0,
and (iii) α′ν ′ = α′′ν ′′ = s1. The relative importance of
the functions (i)–(iii) and whether the two created objects
are pseudofermions and/or pseudofermion holes depends on
the specific two-electron spectral function under consideration.
Our general expressions (A.1)–(A.7) of the appendix for the
pre-factor function F0(z) appearing on the right-hand side of
equation (42) allow the evaluation of all two-electron spectral-
weight distributions for initial ground states with zero spin
density, which in many situations is the case of physical
interest. The branch lines and other spectral features also
contribute to the two-electron spectral-weight distributions, yet
the dominant contributions are of the general form given in
equation (42).

For instance, the preliminary results of [20] consider
both one- and two-electron spectral features, profit from
the PDT for the one-chain problem, are consistent with the
phase diagram observed in the (TMTTF)2X and (TMTSF)2X
series of organic compounds, and explain the absence of
superconductive phases in TTF-TCNQ. The studies of that
reference combine the PDT for several one- and two-electron
spectral functions with a renormalization group analysis to
study the instabilities of a system of weakly coupled Hubbard
chains. For low values of the on-site repulsion U and of
the doping δ = (1 − n), the leading instability is towards
a superconducting state. The process includes excited states
above a small correlation pseudogap. Similar features appear
in extended Hubbard models in the vicinity of commensurate
fillings. The theoretical predictions of such studies are
consistent with the phase diagram observed in the (TMTTF)2X
and (TMTSF)2X series of organic compounds represented
in figure 15. From the results of [20] one can infer that
the low-temperature phase of the coupled-chain system will
show long-range superconducting order. However, the precise
nature of this phase, and the symmetry of the order parameter,
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Figure 15. Temperature–pressure phase diagram of the (TMTTF)2X
and (TMTSF)2X series of compounds. It includes non-Fermi liquid
(NPL), insulating Mott–Hubbard (Mott-CO), spin-density-wave
(SDW), spin–Peierls, Fermi liquid (FL), and superconducting (SC)
phases.

is dependent on the arrangement of the chains within the
material. The investigations of [20] use the exponents obtained
from the PDT for the one-chain problem and confirm that in
1D non-Fermi liquids weak inter-chain hopping can induce
superconductivity. At low temperature these materials show
a spin–Peierls or spin-density-wave phase. Under pressure,
the (TMTSF)2X compounds are driven to a superconducting
phase, which is removed again if one further increases the
pressure.

In addition to the finite-energy spectral features of the
organic compound TTF-TCNQ [4] and the preliminary studies
of [20] on the (TMTTF)2X and (TMTSF)2X series of organic
compounds, the general spectral-function expressions derived
in this paper will be used elsewhere in the study of specific
one- and two-electron spectral functions and its quantitative
application to the unusual spectral properties of other low-
dimensional materials and systems. While the studies of this
paper considered the 1D Hubbard model, which describes
successfully some of the exotic properties observed in low-
dimensional materials [9, 18–20], our results are of general
nature for many integrable interacting problems [1] and
therefore have wide applicability.
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Appendix. The pre-factor function F0(z)

In this appendix a set of alternative expressions for the pre-
factor function F0(z) on the right-hand side of equation (25)

derived by use of equations (19)–(21), (23), and (25) according
to the values of the two parameters 2�±1

αν and two parameters
2�±1

ᾱν̄ is given.

(i) When the four parameters 2�±1
αν where αν = c0, s1 and

ι = ±1 are finite, we find

F0(z) = 2D0

√
vᾱν̄

vαν

∫ 1

0
dx
∫ +1

−1
dy

×
∏

ι′=±1

�
(

1 − x + sgn(z) ι′
[
vᾱν̄ |z| − vᾱν̄

vαν
y
])

�(2�ι′
ᾱν̄ )

× �(x + sgn(z) ι′ y)

�(2�ι′
αν)

(√
vαν

vᾱν̄

[
1 − x + sgn(z) ι′

×
[
vᾱν̄ |z| − vᾱν̄

vαν

y
]])2�ι

ᾱν̄−1

×
(√

vᾱν̄

vαν

[
x + sgn(z) ι′ y

])2�ι′
αν−1

. (A.1)

(ii) When 2�−ῑ
ᾱν̄ = 0 and the remaining three parameters are

finite,

F0(z) = 2D0
vᾱν̄

vαν

∫ +1

−1
dy

×
{

�

(
ῑ

[
sgn(z)y − vαν

(
z − ῑ

vᾱν̄

)])

× �(ῑ [zvαν − sgn(z)y])
}{

�(2�ῑ
ᾱν̄ )
}−1

×
(√

vαν

vᾱν̄

2ῑ
[
z − sgn(z)

y

vαν

]
vᾱν̄

)2�ῑ
ᾱν̄−1

×
∏

ι′=±1

�
(

1 + sgn(z)
[
ι′ + ῑ vᾱν̄

vαν

]
y − ῑ vᾱν̄ z

)
�(2�ι′

αν)

×
(√

vᾱν̄

vαν

[
1 + sgn(z)

[
ι′ + ῑ

vᾱν̄

vαν

]
y

− ῑ vᾱν̄ z

])2�ι′
αν−1

. (A.2)

(iii) When 2�−ι
αν = 0 and the remaining three parameters are

finite,

F0(z) = 2D0

∫ +1

−1
dy

�
(
ι sgn(z)y

)
�(2�ι

αν)

×
(√

vᾱν̄

vαν

ι sgn(z)2y

)2�ι
αν−1

×
∏

ῑ′=±1

�
(

1 − sgn(z)
[
ι + ῑ′ vᾱν̄

vαν

]
y + ῑ′ vᾱν̄ z

)
�(2�ῑ′

ᾱν̄ )

×
(√

vαν

vᾱν̄

[
1 − sgn(z)

[
ι + ῑ′

vᾱν̄

vαν

]
y

+ ῑ′ vᾱν̄ z
])2�ῑ′

ᾱν̄−1

. (A.3)
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(iv) When both 2�±1
ᾱν̄ = 0 and the remaining two parameters

are finite,

F0(z) = D0

√
vᾱν̄

vαν

�
( 1

vαν

− |z|
)

×
∏

ι′=±1

1

�(2�ι′
αν)

(√
vᾱν̄

vαν

[
1 + ι′vαν z

])2�ι′
αν−1

.

(A.4)

(v) When both 2�±1
αν = 0 and the remaining two parameters

are finite,

F0(z) = D0

√
vαν

vᾱν̄

∏
ῑ′=±1

�
(

1
vᾱν̄

− ῑ′z
)

�(2�ῑ′
ᾱν̄ )

×
(√

vαν

vᾱν̄

[
1 − ῑ′vᾱν̄ z

])2�ῑ′
ᾱν̄−1

= 0. (A.5)

(vi) When 2�−ι
αν = 2�−ῑ

ᾱν̄ = 0 and the remaining two
parameters are finite,

F0(z) = 2D0√
vανvᾱν̄

(
vαν − ιῑ vᾱν̄

vανvᾱν̄

)1−ζ0

×
�
(
ῑ[z − ι

vαν
]
)

�(2�ῑ
ᾱν̄)

�
(

1
vᾱν̄

− ῑz
)

�(2�ι
αν)

×
(

2

√
vαν

vᾱν̄

ῑ

[
z − ι

vαν

])2�ῑ
ᾱν̄−1

×
(

2

√
vᾱν̄

vαν

[
1

vᾱν̄

− ῑz

])2�ι
αν−1

. (A.6)

(vii) When both 2�ι
αν > 0 (and 2�ῑ

ᾱν̄ > 0) and the remaining
three parameters vanish,

F0(z) = D0

vαν�(2�ι
αν)

(
2

√
vᾱν̄

vαν

)2�ι
αν−1

δ

(
z − ι

vαν

)
,

(A.7)
(and a similar expression with αν, ι, and ᾱν̄ replaced by
ᾱν̄, ῑ, and αν, respectively).
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